
U.S. DEPARTMENT OF COMMERCE
NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION

NATIONAL WEATHER SERVICE
OFFICE OF SCIENCE AND TECHNOLOGY

METEOROLOGICAL DEVELOPMENT LABORATORY

MDL SOFTWARE DEVELOPMENT PROCESS (SDP)
FOR LOCAL AWIPS MOS PROGRAM (LAMP) PROJECT

DRAFT
February 13, 2004

MDL LAMP SDP
2/13/04

DRAFT

i

TABLE OF CONTENTS

Section Page

1.0 Introduction.. 1
1.2 Document Organization....................................... 1
1.3 Supporting Documents.. 2

2.0 Project Organization and Responsibilities................... 3
2.1 LAMP Project Definition Overview............................ 3
2.3 Other Organizations and Contractors......................... 3

3.0 Project Management.. 4
3.1 Responsibilities.. 4
3.2 Management Process.. 4
3.2.1 Planning Process.. 4
3.2.2 Project Tracking and Oversight.............................. 6

4.0 Software Development Process................................ 7
4.1 Responsibilities.. 8
4.2 Metrics... 9
4.3 Detailed Software Process Activities........................ 10
4.3.1 Requirement Analysis.. 10
4.3.2 Design.. 11
4.3.3 Code and Unit Testing....................................... 13
4.3.4 Software Integration Testing................................ 14

5.0 Documentation... 16
5.1 Formal Documentation.. 16
5.2 Informal Documentation...................................... 17
5.3 Software Development Files.................................. 17

6.0 Reviews... 18
6.1 Peer Reviews.. 18
6.2 Code Walkthroughs... 19
6.3 Management Reviews.. 19
6.3.1 Project Status Reviews...................................... 19
6.3.2 Development Reviews... 19

7.0 Testing... 21

8.0 Configuration Management.................................... 22

9.0 Software Standards.. 23

10.0 Environment... 24
10.1 Development and Testing..................................... 24
10.2 Operational... 24

11.0 References.. 24

MDL LAMP SDP
2/13/04

DRAFT

ii

TABLE OF CONTENTS (continued)

Figures

Figure 4.0-1 Data Flow of Software Development Process............. 7
Figure 4.1-1 Development Organization.............................. 9

Tables

Table 3.2.1-1 Planning Input and Output, Entrance and Exit
Criteria, Process Control, and Metrics................. 5

Table 4.3.1-1 Requirements Analysis Input and Output, Entrance
and Exit Criteria, Process Control, and Metrics........ 11

Table 4.3.2-1 Design Input and Output, Entrance and Exit Criteria,
Process Control, and Metrics........................... 12

Table 4.3.3-1 Code and Unit Testing Input and Output, Entrance
and Exit Criteria, Process Control and Metrics......... 14

Table 4.3.4-1 SwIT Input and Output, Entrance and Exit Criteria,
Process Control, and Metrics.......................... 15

MDL LAMP SDP
2/13/04

DRAFT

1

MDL SOFTWARE DEVELOPMENT PROCESS FOR THE
LOCAL AWIPS MOS PROGRAM (LAMP) PROJECT

1.0 INTRODUCTION

The Meteorological Development Laboratory (MDL) Software Development Process
(SDP) for the Local AWIPS MOS Program (LAMP) project establishes the software
and development processes that are used throughout the software development
life cycle. This document describes the processes and procedures that are
used to design, implement, and test software.

1.1 DOCUMENT ORGANIZATION

The SDP is organized into the following ten sections.

Section 1 - The Introduction presents the purpose and scope of the plan,
an overview of the project, and related documentation.

Section 2 - The Project Organization and Responsibilities section
discusses the project organization and the roles and responsibilities
for LAMP and other organizations that interface with LAMP during the
development process.

Section 3 - The Project Management section describes a standard approach
and mechanism for project managers to plan, track, and measure the
software development process.

Section 4 - The Software Development Process section presents an
overview of the software development life cycle and describes the major
activities in each life cycle phase. It establishes the software
development process, methods, and standards to be used in the develop-
ment of LAMP software.

Section 5 - Documentation describes documentation created and the method
for the retention of that documentation.

Section 6 - Reviews describes the types of reviews, what is being
reviewed, when reviews are employed, and policies and procedures
associated with each review.

Section 7 - Testing explains the concept and activities employed in
testing LAMP software.

Section 8 - The Configuration Management section describes the concepts
and activities used for the management of the software development and
test products.

Section 9 - Software Standards identifies the standards pertaining to
software development including coding standards and design rules.

Section 10 - The Environment section describes the tools, hardware and
software environments used to develop and test LAMP software.

MDL LAMP SDP
2/13/04

DRAFT

2

1.2 SUPPORTING DOCUMENTS

Other important documents related to the SDP include:

MDL Standards, Guidelines and Procedures (NWS 2003a) - This document
contains the software standards used in the development of LAMP software
and contains the set of procedures and guidelines to be used by the
development team to standardize the development process and ensure that
it is a repeatable process.

MDL LAMP SDP
2/13/04

DRAFT

3

2.0 PROJECT ORGANIZATION AND RESPONSIBILITIES

This section describes the responsibilities within the LAMP project and the
Government and Contractor organizations that interface with the project during
the development of application software.

2.1 LAMP PROJECT DEFINITION OVERVIEW

The objective of the Local AWIPS MOS Program (LAMP) project is to implement a
system to provide objective short range forecast guidance for all weather
elements in routine public and aviation forecasts. Hourly observations,
analyses, fields computed from those observations, output of advective models,
radar data, and central MOS guidance are used as input.

The Local AWIPS MOS Program (LAMP) system is designed to frequently update the
central Model Output Statistics (MOS) product suite primarily by incorporating
current observational data. The LAMP Quantitative Precipitation Forecast
(QPF) system also utilizes mesoscale topography and precipitation climatology
to produce precipitation forecasts.

Output will consist of guidance to be made available to the field forecaster
at WFOs in the AWIPS environment and real-time LAMP/QPF products are updated
every three hours (02, 05, 08, 11, 14, 17, 20, and 23 UTC) on the LAMP web
site.

2.2 OTHER ORGANIZATIONS AND CONTRACTORS

MDL staff must interface regularly with other organizations inside and outside
of MDL that play a critical role in the development and deployment of LAMP
software. These organizations include:

RS Information Systems (RSIS) - They are responsible for managing and
staffing MDL’s system administration group.

OST/MDL/Product Generation Branch (PGB) - PGB is responsible for
developing and implementing software that ingests and displays LAMP
products on an AWIPS platform.

Office of Science and Technology (OST) - OST has overall management
responsibility for the MDL programs.

OST/MDL/Statistical Modeling Branch (SMB) - SMB is responsible for
providing certain data sets used in the version of LAMP running locally
to support the LAMP web site, and used by LAMP 2000 development. Code
is shared between the Mesoscale Prediction Branch and SMB necessitating
coordination and interaction

MDL LAMP SDP
2/13/04

DRAFT

4

3.0 PROJECT MANAGEMENT

This section describes a standard approach and mechanism for project managers
to plan, track, and measure the software development process.

3.1 RESPONSIBILITIES

The roles and responsibilities of project management are described below.

Director, MDL - Overall responsibility for the software development
effort.

Project Manager - The Project Manager is responsible for reviewing the
plans, making the project commitments, and reviewing any changes.
Specifically, the Project Manager oversees cost, schedule, and inter-
faces with other NWS organizations.

Task Manager - The Task Manager leads the development of the task. They
coordinate the activities of the developers and reviewers. The Task
Manager performs the requirement analysis, assists with the design,
reviews developers’ code and test procedures, and assists the
preparation of test matrices and schedules. The Task Manager reports to
the Project Manager.

3.2 MANAGEMENT PROCESS

Managing a software project requires careful planning, control of activities,
and tracking against the planned activities. Once a plan is developed, the
actual activities are tracked against the plan to determine whether there is
any deviation from the plan. Metrics (as defined in Section 4.2) are used to
measure performance and suggest process improvement.

This management process will mature as the program progresses. This means
that the plans are living documents. This management process emphasizes early
planning and risk analysis. The plans are reviewed, revised, and expanded
based on the most recent knowledge of the program at key milestones, when the
scope changes, and at regular intervals.

3.2.1 PLANNING

Software planning involves developing estimates for the work to be done,
establishing the necessary commitments, and defining a plan to complete the
work. The plan provides the basis for initiating the software effort and
managing the work. Accurate estimations of cost and schedule up front and
adherence to required staffing levels and equipment usage are a key factor to
completing a project within budget.

Planning is a continuous process. As the design proceeds, certain design
decisions may change the plan or schedule. As change requests (e.g., new
deficiencies, enhancements, or requirements) are identified, the process must
be repeated and documentation produced describing the impact of any changes to
the cost and schedule.

MDL LAMP SDP
2/13/04

DRAFT

5

The following functions are required during the Planning step. The responsi-
ble party for each function is shown in bold type.

Prepare LAMP Change Requests - LAMP Change Request (LCRs) can be
prepared by Project Manager, Task Manager or Developer for new require-
ments, enhancements, software deficiencies, hardware and system changes.

Create Tasks - If necessary, tasks are prepared by Task Manager for new
requirements, enhancements, hardware and system changes. Tasks are
linked to LCRs.

Estimate Level of Effort (ELOE) - For each task the Task Manager
estimates the size of the task and the ELOE. The size of the task
includes the number of software components required and lines of code.
The ELOE is measured by estimating the number of labor hours required to
develop, test, document, and maintain the software.

Prepare Project Tracking Information (PTI) - The Task Manager prepares a
Staffing Plan and Development Schedule.

Table 3.2.1-1 describes the input, output, entrance and exit criteria, process
controls and metrics for this Planning step along with the responsible
parties.

Table 3.2.1-1. Planning Input and Output, Entrance and Exit Criteria,
Process Controls and Metrics

Title Description Responsibility

Entrance
Criteria

LAMP Change Request Form prepared Project Manager, Task Man-
ager, Developer

Input LAMP Change Request received
Other development schedules

Task Manager, MDL Director,
Branch Chief, Developer

Output Project Tracking Information (PTI) Task Manager

Exit
Criteria

PTI completed Task Manager

Process
Controls

Management reviewed MDL Director

Metrics To Be Determined (TBD)

MDL LAMP SDP
2/13/04

DRAFT

6

3.2.2 PROJECT TRACKING AND OVERSIGHT

Software tracking and oversight involve tracking and reviewing software
progress against the documented estimates, schedules, and plans, and adjusting
these based upon the actual data. This activity occurs throughout the
development effort.

Software tracking and oversight start as soon as the effort commences. The
development schedules are used as the basis for tracking and oversight
throughout the development life cycle. During development, actual data are
collected according to the process model. These data are analyzed at speci-
fied intervals against the plan. If the actual status of the program deviates
beyond an acceptable norm, corrective action is taken. Corrections made to
schedule, cost, or software sizes are reviewed with respect to each other.
Then, the schedule and any renegotiated commitments are revised and reviewed.

When modifying the schedule, the Software Manager (SM) keeps records that
explain the reasons for various corrective actions and the rationale for that
change. This information is useful for developing the lessons learned and
other postmortem analysis.

The following are reviews that are established to track development schedule.

Status Reviews - Status reviews, if necessary, are conducted with the
Task Manager and developer to review progress and address issues. These
can be conducted weekly or biweekly depending on the wishes of the Task
Manager.

Planned Reviews - Planned reviews are conducted at key periods during
the development cycle to review requirements, design, coding, testing,
and delivery. In addition, reviews are conducted to review code (e.g.,
code walkthrough) and other development products (e.g., peer reviews).
See Reviews (Section 6.0) for more information on these reviews.

LAMP Staff Meeting - The Project Manager, Task Manager and Software
Engineer meet weekly to review progress, address issues, and coordinate
activities.

In addition, following information is used by the Task Manager to provide
tracking and oversight, and facilitate reporting to other NWS organizations.

Project Tracking Information (PTI)

• Development Schedule - High level schedule showing the development
activities (e.g., requirement review) and major checkpoints on a
time line.

• Staffing Plan - List of tasks per release with estimated level of
effort and identified Task Manager and development staff.

• Development Checklist - Internal detailed checklist employed by
the management to track development progress and adherence to the
MDL Software Development Approach requirements (NWS 2004a).

See the MDL Standards, Guidelines, and Procedures (NWS2003a) for a PTI
template.

Metrics - Information to guide process improvement (See Section 4.2).

MDL LAMP SDP
2/13/04

DRAFT

7

4.0 SOFTWARE DEVELOPMENT PROCESS

This section describes the software development and maintenance process in
detail. Below are the major activities that should be accomplished during the
development of software.

C Requirements Analysis
C Design
C Coding and Unit Testing
C Software Integration Testing

Some of these activities may not be necessary for specific types of projects.
The process is flexible and can be ordered to fit any of the popular paradigms
of software architecture including Waterfall, Rapid Prototype, or Evolutionary
models. Figure 4.0-1 shows the typical waterfall software development process
sequence with interrelationships, and significant checkpoints and reviews.

Figure 4.0-1: Data flow of the Software Development Process.

MDL LAMP SDP
2/13/04

DRAFT

8

4.1 RESPONSIBILITIES

The development organization of shown in Figure 4.1-1 and defined below.
Depending on the size of the development effort, a staff member may be tasked
with multiple roles.

Figure 4.1-1. Development Organization

Task Manager - The Task Manager’s leads the development of the task.
The Task Manager coordinate the activities of the developers and
reviewers. The Task Manager performs the requirement analysis, assists
with the design, reviews developers code and test procedures, and
assists the preparation of test procedures. The Task Manager reports
to the Project Manager.

Software Engineer - The Software Engineer is the chief architect and
approves all design and code walkthroughs.

Developer - The Developer’s major responsibility is to code software
using the established coding standards, guidelines and procedures.
After completing the coding phase, the Developer goes through the code
review process with their Task Manager. The Task Manager and Developer
are responsible for creating test procedures, performing the unit
testing, and submitting a LAMP Change Request (LCR) when coding is
completed and the software is ready for integration and final testing.
The Developer is responsible for preparing all necessary external
documentation.

Reviewers - The Reviewers role is to participate in the various reviews
described in Section 6.0 of this document. The reviewers can be the
Task Manager, Software Engineer, technical staff members, developers,
specialists or users whose backgrounds give them insight into the
material to be discussed.

Tester - A developer, assigned by the Task Manager, preferably someone
other than the developer who wrote the code.

Configuration Management Lead – The CM Lead manages version control for
the LAMP software.

MDL LAMP SDP
2/13/04

DRAFT

9

4.2 METRICS

The Project/Software Managers use software metrics gathered to evaluate key
characteristics of the software being developed, the process employed, and the
associated management indicators of progress. A successful metrics program
depends on accurate and consistent data collection and presentation. The
validity of the data should be determined prior to any analysis activity.
Under these circumstances, the metrics can provide early warning of potential
software development problems. In turn, this should lead to early problem
resolution.

Graphic presentation of the metrics can reveal developing trends, which, when
analyzed as related sets, highlight anomalies that might otherwise be over-
looked. Management can then determine their significance and corrective
action can be taken. Results are used to improve the ongoing project and are
reported at management reviews.

Types of metrics include number of software requirements, number of software
requirement changes, product size, level of effort, cost, schedule, defects
and computer resource utilization. In the future, MDL will develop composite
metrics to indicate productivity, quality, production rate and stability.

Metrics used by LAMP are identified in Section 4.3 of this document.

MDL LAMP SDP
2/13/04

DRAFT

10

4.3 DETAILED SOFTWARE PROCESS ACTIVITIES

For each step in the process, this document defines:

Entrance Criteria - criteria needed to start the activity,
Input - products dependencies of the step,
Functions - process and tasks of each step,
Metrics - set of measurement data resulting from the work products,
Responsibility - who is responsible for completing that activity,
Output - products of activity,
Exit criteria - criteria for completing the activity, and
Process controls - controls put into place to insure quality.

Guidelines and process descriptions necessary to complete the activity are
kept in the MDL Standards, Guidelines and Procedures (NWS 2003a).

4.3.1 REQUIREMENTS ANALYSIS

The software development processes are requirements driven. Requirements are
a formal statement of an attribute to be possessed by the product or a
function to be performed by the product. These requirements form a written
agreement between developer and customer. Requirement analysis provides a
means for establishing and maintaining requirements so that both the customer
and the developers are working from the same set of expectations.

The completion of the Planning (Section 3.2.1) activity results in a task(s)
being assigned to a Task Manager or Developer. The Task Manager or Developer
defines and develops software requirements and prepares a Requirements
Description (RD). The Requirement Description is a set of detailed software
requirements derived from the LAMP Change Request. Requirements can address
operation concepts, functional and user interface specifications, performance
and capability, external interfaces, security, error handling, installation,
configuration, language, maintenance, and the use of legacy software. For
data-driven and data-intensive systems, the Requirement Description can
include data sources, types, and rates.

A Requirement Review is held to finalize the understanding of requirements
with the Task Manager and obtain approval.

Note that requirements can be dynamic and change as the design is evaluated
and development is conducted. As these changes occur, the changes should be
made to the Requirements Description and those changes presented at the
appropriate review.

The following functions are required during the Requirements Analysis step.
The responsible party for each function is shown in bold type.

Define and develop software requirements - The Task Manager or Devel-
oper defines the set of software and derived requirements for this
project and prepares a Requirement Description.

Analyze requirements - A peer review is conducted by the Task Manager or
Developer to analyze the requirements to ensure, at a minimum, trace-
ability, completeness, clarity, testability, safety, and validity.

Perform Requirements Review - A Requirements Review is conducted by the
Task Manager or Developer. Participants should include Task Manager.
Action items (if necessary) are documented and delivered to the approval
body and tracked through closure by the Task Manager or Developer.

MDL LAMP SDP
2/13/04

DRAFT

11

Approval - The Requirements Review is formally approved by Task Manager
and/or the Project Manager. The approval can be provided verbally, in
an email, or memo.

Update LAMP Change Request (LCR) - The Developer updates the LCR upon
completion of this phase.

Update Project Tracking Information (PTI) - The Task Manager updates the
Development Schedule and staffing with any changes that result from a
better understanding of the requirements.

Table 4.3.1-1 describes the input, output, entrance and exit criteria, process
controls, and metrics for this Requirements Analysis step along with the
responsible parties.

Table 4.3.1-1. Requirements Analysis Input and Output, Entrance and
Exit Criteria, Process Controls, and Metrics

Title Description Responsibility

Entrance
Criteria

Development schedule prepared Task Manager

Input LAMP Change Request Project Manager,
Task Manager,
Developer

Output Requirements Description Task Manager,
Developer

Exit
Criteria

Requirements Description approval Task Manager and/or
Project Manager

Process
Controls

Requirements Review

Management Approval

Task Manager,

Project Manager

Metrics TBD

4.3.2 DESIGN

The Design phase will establish a complete software design to be used by the
developers of the software. The software components are defined in terms of
purpose, use cases, interfaces, data requirements, data structure, error
handling, storage and throughput, timing requirements, and diagnostic consid-
erations. The relationship of components is defined in terms of data flow
between them and external interfaces, and the control flow between components.

A Design Review is held to finalize the understanding of design with the
system engineering community and obtain approval to code the software.
Approval of the design is provided by the Task Manager and Software Engineer.

The following functions are required during the Design step. The responsible
party for each function is shown in bold type.

Define software components - The Task Manager or Developer defines the
set of software components to be developed or modified.

MDL LAMP SDP
2/13/04

DRAFT

12

Prepare design - The Task Manager or Developer defines components and
interfaces, relationships and data flows, physical structure, user
interface, data structure, and critical test scenarios.

Peer Review - Peer reviews are conducted by the Task Manager or Devel-
oper to review selected design components. Participants could include
the Task Manager and other Developers.

Perform Design Review - A Design Review is held to understand a basic
design when new software development is undertaken for either develop-
mental or operational codes. No strict process is followed. The review
process depends on the code that needs to be written. If a developmen-
tal code that needs to be completed does not deviate much from a
previous code, the review process is very informal. A more extensive
review is undertaken in instances when a code departs extensively from
previously written software.

A Design review is conducted by the Task Manager or Developer. Partici-
pants should include Branch Chief and Software Engineer. Action items
(if necessary) are documented and delivered to the approval body and
tracked through closure by the Task Manager or Developer.

Approval - The Design Review is formally approved by the Project Manager
and Task Manager. The approval can be provided verbally, in an email,
or memo.

Update LAMP Change Request (LCR) - The Task Manager or Developer updates
the LCR upon completion of this phase.

Assign developers - The Task Manager assigns developers to the software
components.

Update Project Tracking Information (PTI) - The Task Manager updates the
Development Schedule.

Table 4.3.2-1 describes the input, output, entrance and exit criteria, process
controls, and metrics for this Design step along with the responsible parties.

 Table 4.3.2-1. Design Input and Output, Entrance and Exit Criteria,
Process Controls, and Metrics

Title Description Responsibility

Entrance
Criteria

Requirements Description Approval Task Manager, Software
Engineer

Input Requirements Description Task Manager, Developer

Output Design documents

Updated Project tracking Information
(PTI)

Task Manager, Developer

Task Manager

Exit
Criteria

Design completed

PTI update

Design approved

Task Manager, Developer

Task Manager

Task Manager, Project
Manager

Process
Control

Design Review Task Manager,
Software Engineer

MDL LAMP SDP
2/13/04

DRAFT

13

Metrics TBD

4.3.3 CODE AND UNIT TESTING

Once the Design Review is approved, the developers assigned to the Coding
activity can begin.

Coding is performed uniformly across software products using defined standards
and guidelines. The objectives of source code written are as follows:

• Meets requirements
• Contains correct logic and interfaces and handles data structures

properly as specified in the design documentation
• Complies with coding standards
• Compiles successfully without any warning or error messages
• Follows good coding techniques
• Includes proper internal documentation
• Follows reasonable and understandable size limitations
• Considers reuse, portability, and system independence

The following functions are required during the Code and Unit Testing step.
The responsible party for each function is shown in bold type.

Prepare code - The code is created or modified by the Developer accord-
ing to the design documents and MDL Standards, Guidelines and Procedures
(NWS 2003a).

Create Test Procedures - Test procedures are created by the Task Manager
and Developer to test the modification to the code. Additional test
procedures are identified to ensure the modification has not affected
the existing code. Test Procedures should be prepared in accordance
with the MDL Standards, Guidelines and Procedures (NWS 2003b).

Test Procedure Peer Review - The Developer should conduct a peer review
of the test procedures.

Perform Unit Testing - The Developer should perform unit testing in
accordance with Section 2.1.1 of the LAMP Test Plan (NWS 2003b). In
most instances, the software developer is responsible for checkout of
the software to ensure functionality. It is the responsibility of the
developer to be sure that answers are correctly obtained by comparing
the answers of older codes. The Task Manager supervises the testing.

Perform Code Walkthroughs - Once the code has been completed and Unit
testing has been completed, the Developer prepares and performs a Code
Walkthrough. Participants in the code walkthrough include the Task
Manager and Software Engineer. This is typically an informal process,
however, a Code Walkthrough form needs to be filled out and defects
recorded.

Fix Defects - The Developer fixes defects found during the Code
Walkthrough.

Prepare Draft MDL Office Note - The Developer prepares a first draft of
the MDL Office Note.

Update LAMP Change Request (LCR) - The Developer updates the LCR upon
completion of this phase.

Table 4.3.3-1 describes the input, output, entrance and exit criteria, process

MDL LAMP SDP
2/13/04

DRAFT

14

controls, and metrics for this Code and Unit Testing step along with the
responsible parties.

 Table 4.3.3-1. Code and Unit Testing Input and Output, Entrance and
Exit Criteria, Process Controls, and Metrics

Title Description Responsibility

Entrance
Criteria

Design Completed Task Manager, Devel-
oper

Input Design Document Task Manager, Devel-
oper

Output Code, Test procedures, Code Walkthrough
documentation, Draft Office Note, Development
Ticket

Developer

Exit
Criteria

Code is tested, walkthrough is completed,
defects are addressed, draft office note is
completed

Developer

Process
Controls

Code Walkthrough

Peer Reviews

Developer

Developer

Metrics None

4.3.4 SOFTWARE INTEGRATION TESTING (SwIT)

The LAMP team established an internal process to test software in an inte-
grated environment and maintain developmental software libraries. The Task
Managerer assigns themselves or another developer to test the software change.

The following functions are required during the SwIT step. The responsible
party for each function is shown in bold type.

Assess LAMP Change Request (LCR) - The Task Manager assess the code
change and insures that the code has gone through each step of the LAMP
software development process (e.g., design review, code walkthrough).

Assign a LAMP Change Request - The Task Manager assigns LAMP Change
Request (LCR) to a member of the LAMP team called in this document, a
Tester.

Run Test Procedures - The Tester runs the assigned test procedures for
the Code Change Request, records the results and notifies the Developer.

Update LAMP Change Request (LCR) - The Developer updates the LCR upon
completion of this phase.

Conduct an Integration Readiness Review (IRR) - The Task Manager reviews
the Code Change request to determine the readiness for System Integra-
tion Testing. Participants should include the Project Manager, Task
Manager, Developer and possibly the System Engineer. Action items (if
necessary) are documented.

Approval - The IRR is formally approved by the Project Manager and Task
Manager. The approval can be provided verbally, in an email, or memo.

MDL LAMP SDP
2/13/04

DRAFT

15

MDL LAMP SDP
2/13/04

DRAFT

16

Configuration Management Update - The CM Lead will implement the codes
as indicated in the Code Change request, updates the Change Log, README
Files in the affected directories, remakes any executables or libraries.
Changes are made to the Local, AWIPS and LAMP-2000 versions. The LAMP
Task and Software Engineer are notified that the change has been
implemented.

Table 4.3.4-1 describes the input, output, entrance and exit criteria, process
controls, and metrics for this SwIT step along with the responsible parties.

 Table 4.3.4-1. SwIT Input and Output, Entrance and Exit Criteria,
Process Controls, and Metrics

Title Description Responsibility

Entrance
Criteria

LAMP Change Request received Developer

Input LAMP Change Request Developer

Output Tests are completed and checked out Tester

Exit
Criteria

Testing completed,

Integration Readiness Review conducted

Software is approved

All versions updated

Task Manager,
Tester

Task Manager

Project Manager

CM

Process
Control

Integration Readiness Review Task Manager

Metrics TBD

MDL LAMP SDP
2/13/04

DRAFT

17

5.0 DOCUMENTATION

Documentation is continually prepared to communicate and archive valuable
development information. This information is used by management, system
integrators, users, developers, and support and maintenance personnel. It is
included as a separate section in this document to emphasize its importance.

All documentation is updated continuously and archived for all software
development in the Software Development Files (SDFs).

5.1 FORMAL DOCUMENTATION

This section identifies what formal external documentation is produced for
software developed by LAMP. Internal documentation requirements and standards
are covered under the appropriate software standards described in Section 9.0
of this document.

Requirements Description - Description of the requirements is based on
the LAMP Change Request (LCR). Guidelines for preparing requirements
and a checklist are contained in the MDL Standards, Guidelines and
Procedures (NWS 2003a).

Design Document - Documentation used by the LAMP team to capture the
design of an application. Guidelines for preparing a design and a
checklist are contained in the MDL Standards, Guidelines and Procedures
(NWS 2003a).

Project Tracking Information (PTI)

• Development Schedule - High level schedule showing the development
activities (e.g., requirement review) and major checkpoints on a
time line.

• Staffing Plan - List of tasks per release with estimated level of
effort and identified Task Manager and development staff.

• Development Checklist - Internal detailed checklist employed by
the management to track development progress and adherence to the
MDL Software Development Approach requirements (NWS 2004a).

See the MDL Standards, Guidelines, and Procedures (NWS2003a) for a PTI
template.

Test Procedures - One or more test procedures are identified to evaluate
the functional or structural condition of the code. Test procedures are
designed based on specific functional requirements or components of code
structure. Each test procedure will identify the software requirements
validated by the test. A complete description of test procedures and
recommended documentation is contained in the MDL Standards, Guidelines
and Procedures (2003a).

MDL LAMP SDP
2/13/04

DRAFT

18

LAMP Change Request - The LAMP Change Request (LCR) documents a software
change and follows a change from identification of a requirement,
improvement or bug to completion of testing. A LCR includes the
following information:

C Ticket number
C Date of Entry
C Status (e.g., COMPLETED)
C Programmer name
C Category of Change (e.g., bug, improvement, requirement)
C Reason for Change
C Codes Affected
C Description of Change Made
C Tester
C Test Procedure
C Test Notes
C Version Control Information
C Platform where change is made

MDL Office Notes - An MDL Office Note is the formal documentation
prepared for the software routines under the LAMP project. See the MDL
Standards, Guidelines, and Procedures (NWS 2003a) for more information
concerning the content and style of the Office Note.

5.2 INFORMAL DOCUMENTATION

Informal documentation includes:

• Briefing slides,

• Design information and documentation, including rationale support-
ing design decisions,

• Peer review, design review, and code walkthrough results, check-
lists, and comments,

• Test cases and results plus test drivers used, and

• Meeting minutes, memos, action items, checklists, and
correspondences.

5.3 SOFTWARE DEVELOPMENT FILES

Software Development Files (SDFs) contain all formal and informal information
describing the development or maintenance of the software product. The SDF
should be maintained online as much as possible, to facilitate searching and
inclusion into documentation. It may contain media copies or references to
controlled media copies of supporting data.

MDL LAMP SDP
2/13/04

DRAFT

19

6.0 REVIEWS

This section defines the process for the five types of internal reviews that
are performed during the development of software. These reviews are catego-
rized as:

 • Peer reviews
 • Code walkthroughs
 • Project Status Reviews
 • Development Reviews

Some of these reviews are conducted internal to LAMP and, in most cases, do
not include customer participation. Typically, the reviews addressed in this
section lead up to development reviews (e.g., design reviews).

Our experience has proven the effectiveness of internal reviews throughout the
software development and maintenance process. This is an extremely
cost-effective approach for early identification and resolution of technical
and management problems and improved communication within the software project
team. Furthermore, the types of reviews defined in this section work equally
well on all sizes and types of software projects. However, each type of
review must be exercised in an appropriate manner, as defined in this section,
or substantial benefits may be degraded.

The Software Manager responsibility includes participation in selected
reviews, usually as an observer, and verification that the reviews are taking
place in conformance with the process. This responsibility includes periodic
auditing of selected SDFs to ensure that the material is updated and current.

6.1 PEER REVIEWS

Peer reviews are conducted according to a documented procedure. Staff is
trained in peer review objectives, principles, and methods from the perspec-
tive of both leader and participant.

The concept behind peer reviews is that the author/developer of a product
(i.e., specification, design, unit of code, test procedures) gets help from a
colleague who is familiar with the product. Together, they discuss in detail
a specific portion of the overall product. The author presents the product
element to the colleague, item by item, who in turn raises questions and
suggestions. Application of the concept is simple and inexpensive.
One-on-one reviews are ad hoc. They are accomplished with only enough
planning necessary to solicit participation from the colleague and prepare the
product element to a state where it can be reviewed. Such reviews should
always be limited to two hours. Peer reviews usually examine a portion of a
product rather than the entire document, plan, specification, or design under
review. Because peer reviews impose only small blocks of time, this technique
is used frequently (typically many times in a given week) among the set of
people working that project. Notes are kept by the author of the product
element. No "list of issues" or action items result from peer reviews.

The MDL Standards, Guidelines, and Procedures (NWS 2003a) contains guidelines
on how to conduct peer reviews.

MDL LAMP SDP
2/13/04

DRAFT

20

6.2 CODE WALKTHROUGHS

Similar to peer reviews, code walkthroughs involve only technical staff. The
number of participants, counting the product author, ranges from three to six.
Scheduled code walkthroughs have a maximum duration of two hours. The focus
is on identifying technical issues and concerns, not solutions. As discussed
below, a moderator is assigned to keep the review focused only on technical
issues, rather than discussing solutions to issues. A list of the identified
issues is made during the review.

Follow-up code walkthroughs are conducted as appropriate to the importance of
the identified issues. The list of issues packaged with a minimal amount of
data about the review itself (e.g., date and members) are placed in the
Software Development Files (SDFs) for the product that was partially or fully
reviewed.

The MDL Standards, Guidelines, and Procedures (NWS 2003a) contains guidelines
on how to conduct code walkthroughs.

6.3 MANAGEMENT REVIEWS

Management is responsible for resolving the technical, schedule, and resource
issues that are a significant risk to the project. Primary communication and
resolution mechanisms used by management are Project Status Reviews.

6.3.1 PROJECT STATUS REVIEWS

Project Status Reviews occur both on a periodic and event-driven basis.
Participants can include LAMP team members, Task Manager, and Project Manager.
Technical progress, plans, performance, and issues are discussed and tracked
against the baselined project plans. Each attendee presents a summary of
activities and issues since the last Project Status Review as well as plans
for the upcoming period. The meeting focuses on open, significant issues.
Anyone can present alternative solutions for those significant issues.

Task Manager should record all issues identified at the meeting as requiring
resolution. An action list is distributed by the Task Manager to the meeting
attendees. The Task Manager maintains the list and detailed records of how
each issue was resolved.

6.3.2 DEVELOPMENT REVIEWS

Development Reviews are conducted upon the completion of a formal milestone
and should be performed in accordance with a documented procedure contained in
the MDL Standards, Guidelines, and Procedures (NWS 2003a). Development
reviews include:

Requirements Review - Presentation and request for approval of require-
ments.

Design Review - Presentation and request for approval of design informa-
tion.

MDL LAMP SDP
2/13/04

DRAFT

21

Integration Readiness Review - The purpose of the Integration Readiness
Review (IRR) is to evaluate the software readiness to proceed to an
operational platform for implementation. The IRR is performed by the
Task Manager. The evaluation process involves reviewing the test
results of Software Integration Testing and to ensure all defects are
either corrected and tested or have been reassigned to a later release.
A satisfactory resolutions of test procedures is essential before
approval. This review should include:

Verify that all development steps were completed
- including code walkthroughs

• review of the code to verify it meets LAMP standards
• review of test procedures to verify that the software was ade-

quately tested
• perform ad-hoc testing of the software
• verify documentation is complete

- Office Note, when appropriate
- LAMP Change Request (LCR)

MDL LAMP SDP
2/13/04

DRAFT

22

7.0 TESTING

The primary goal of all of the testing activities is to identify and remove
defects and to provide a standard approach for testing the LAMP software.

The LAMP Test program is based on the following key concepts:

$ The testing approach is to provide an effective, repeatable,
software test process which is independent of the software lan-
guage, design methodology, and development environment,

$ The testing scope is to identify and remove all defects and also
to validate that the software applications meet all requirements
allocated to them,

$ The testing strategy incorporates two basic points of view:
functional (user=s) and structural (program attributes). The
testing of each application will be designed to include adequate
coverage of both the functional and structural aspects,

$ The testing process will essentially follow a bottom-up approach.
The testing will begin at the lowest unit level and proceed upward
as units are integrated into the application. Regression testing
will be performed when appropriate, and

$ Quality is designed into products using defined processes that are
continually monitored and updated to improve their efficiency, to
avoid recurring problems, and to maintain the desired quality of
resulting products.

The MDL Test Process contained in the MDL Standards, Guidelines, and
Procedures (NWS 2003b) describes the criteria, test strategy (i.e., test
cases, procedures, level of testing) necessary to provide an effective,
repeatable software test process which is independent of the test environment.

MDL LAMP SDP
2/13/04

DRAFT

23

8.0 CONFIGURATION MANAGEMENT

The Configuration Management (CM) function ensures that the software develop-
ment process is followed and that the necessary metrics are collected.

The CM program is based on the following key concepts:

• The tools used are customized to the defined development life
cycle,

• All code changes are documented and related to the appropriate
change document, and

• The change documents are customized to collect the necessary
metrics and to provide management, developers, and users with the
appropriate information in a timely manner, so as to identify
risks as early as possible.

The LAMP team uses a series of change logs associated with each version of
LAMP. These change logs include:

LAMP Change Requests (LCR) - used to track a variety of information for
each code change (See section 5.1 of this document).

README Files - files associated to each version describing:
- the date of the change, programmer, and description

In addition, a central LAMP team member controls the code implementation. The
CM Lead implements the codes as indicated in the LAMP Change Request (LCR),
updates the README files in the affected directories, remakes any executables
or libraries that need to be remade, updates the LCR to indicate the location
and names of the previous versions of codes, and also updates the change log
to indicate the item is CLOSED or COMPLETED. The previous version is saved
with a suffix of .MMDDYYYY where MM = month, DD = day, and YYYY = year, and
placed in a “drprev” subdirectory under the directory where the updated code
resides. The CM Lead notifies the remainder of the LAMP team, and Task
Manager, concerning what was changed and why. Each LAMP Change Request (LCR)
is printed out and stored as a hard or backup copy in the SDF.

MDL LAMP SDP
2/13/04

DRAFT

24

9.0 SOFTWARE STANDARDS

The critical importance of developing well documented and well-structured code
has become more obvious with time. Except for, possibly, some small pro-
grams/subroutines written exclusively to test an idea or structure that will
soon be discarded, Government developed software will be inherited and
maintained by others. It is imperative to follow good coding and documenta-
tion rules in the development of all code, and in particular code that is to
be handed off for use outside of MDL. Reasons include:

• With several people involved in a project, it is important that
guidelines be followed so that all can easily "read" another
person's program,

• Usually, it will fall to someone other than the originator to
modify or maintain a program at some time in the future. Again,
if a program has been written and documented according to pre-
scribed rules, revisions and maintenance are much easier,

• Standardization will reduce errors in coding. The eye and mind
become accustomed to "patterns," and a break in a pattern may be
an error,

• Converting a body of software from one computer system to another
is easier if it is all written and documented to the same stan-
dards, and

• New employees with little or no programming experience can be more
easily trained in good procedures if those procedures are written
down and everyone follows them.

In summary, the objectives of these guidelines are to enhance clarity,
testability, maintainability, and person-to-person and computer-to-computer
transferability of software throughout its life cycle. The following stan-
dards are contained in the MDL Standards, Guidelines, and Procedures (NWS
2003a):

MDL FORTRAN Standards - The developmental software follows standards
established within MDL for all FORTRAN codes. Fortran77 conventions
with extensions are used on the Hewlett-Packard (HP) platform.

NCEP FORTRAN Standards - The operational software follows both MDL and
NCEP standards established for FORTRAN codes. The NMC Handbook docu-
ments the NCEP standards. The internal code documentation required by
the standards is enforced by an automated checking procedure before the
software is implemented in operations. On the NCEP IBM platform,
software must conform to Fortran95 conventions.

Scripting - UNIX scripting done for the Posix shell is used for the
operational software running in the NCEP environment.

MDL LAMP SDP
2/13/04

DRAFT

25

10.0 ENVIRONMENT

10.1 DEVELOPMENT AND TESTING

The development and testing environment for MDL consists of legacy HP running
a variety of X software applications. The following HP equipment, broken out
by floor, is used for development:

10th floor - BLIZZARD, ICE, PRECIP, CIRRUS

NCEP - the IBM eServer P690 and FAStT500 Storage server that uses a
FORTRAN 95 compiler on an AIX UNIX platform.

10.2 OPERATIONAL

The location of the operational software is dependant on the software.

Local version of LAMP - runs on ICE, an HP computer, and is controlled
by csh csripts. Web products are generated using both GEMPAK and
gnuplot software packages and are run from either csh or ksh scripts

AWIPS version of LAMP - runs on HP and Linux systems

LAMP-2000 - can run on ICE HP platform or the NCEP IBM AIX platform.

11.0 REFERENCES

National Weather Service, 2003a: MDL Standards, Standards, Guidelines and
Procedures for AWIPS, Meteorological Development Laboratory, Office of
Science and Technology, NWS, National Oceanic and Atmospheric Adminis-
tration, U.S. Department of Commerce, (in preparation).

